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ABSTRACT

We present an approach for estimating the configuration of a robotic ma-
nipulator using computer vision. While sensors and encoders are built into the
design of most industrial robotic arms, there are settings where integrating
such components is infeasible due to constraints such as cost, complexity,
or operational environment. In such cases, alternative methods of state esti-
mation are required. This work leverages a transfer learning-based method
to extract the joint configuration of a robotic arm in 3D space from images.
Using a pretrained vision model as a backbone, we tune the network to extract
informative feature maps corresponding to each degree of freedom (DOF)
of the manipulator; a dense network subsequently infers the corresponding
state vector. We propose a stage-based approach with a simplified model
training pipeline to estimate the state of a serial manipulator within a real
environment.
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Introduction

State estimation is the process of inferring the current state (e.g. position,
velocity, orientation) of a dynamic system. In robotics, this allows for real-
time localization where the configuration of an arm is determined through the
estimation of the angular and translational components of individual joints
or linkages [1, 2]. Most robotic systems accomplish this using embedded
encoders, with each joint that composes an arm contains an encoder which
returns its current state [3]. This state measurement is then traditionally used
as the feedback element for a control system. Figure 1 depicts a generic
control system. Error is defined as the difference between the reference input
angle and the output angle. A negligible error indicates completion of the
system translation [4].

Figure 1: Basic closed-loop control system diagram.

Although encoder based state estimation is robust and has proven pre-
cision, there are numerous scenarios in which encoder reliability struggles
or are infeasible to implement. For example, in high radiation environments
where gamma and beta radiation interfere with encoders [5], or on-orbit ser-
vicing operations where encoder failure can lead to neighboring object dam-
age [6] and replacement costs are prohibitive. These constraints motivate
the need for alternative state estimation methods. One of the predominant
alternatives is the use of vision for encoderless state estimation and con-
trol. In general, previous vision based approaches can be separated into two
categories: two-dimensional (2D) and three-dimensional (3D) methods. 3D
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methods primarily involve the use of RGB-Depth cameras or Light Detection
and Ranging (LiDAR) systems [7, 8]—these have been effective for mobile
robot object tracking or end effector state estimation, but often suffer from
self occlusion and high computational expense. Further information on 3D
methods please reference [9–11] To avoid the limitations of 3D vision meth-
ods, this considers a 2D method. In contrast to 3D methods, 2D methods
utilize traditional imagery, making them less computationally expensive, as
they perform feature extraction solely in the image plane. This computational
savings is essential for vision based control, where near real-time feedback is
essential. There are two main 2D image based techniques for state estimation.
The first is the use of fiducial markers where physical points or markings are
placed onto the system. These predefined points serve as tracking markers
to determine the current state. The major drawback of this method is that
the accuracy of detecting these markers suffers under camera motion blur,
self-occlusion when markers are blocked from the camera, and false-positive
detections from camera artifacts [12]. The second is the use of keypoints,
whereby non-physical points are algorithmically placed on to features that
can be reliably tracked for state estimation. Although the use of keypoints is
often more robust, the detection accuracy of these virtual markers can also
suffer from self-occlusion, false feature matches, and environmental light-
ing conditions. In addition, this method is also far more computationally
expensive [13].

The primary drawback of the methods described above is their lack of
generalizability. The 2D methods described above are largely intended for
use on a single manipulator, and do not inherently generalize well to different
manipulator configurations or alternate robotic arms. Recently, advancements
in machine learning have allowed for more robust robotic state estimation
using 2D imagery. Machine learning, and more specifically computer vision,
has shown promise in bridging this generalization gap. In this paper, we
present an alternative 2D method of state estimation using machine learning
based computer vision, through the implementation of a convolutional neural
network (CNN) trained on planar images of a serial manipulator. Through this
approach we demonstrate the ability of a CNN architecture to perform state
estimation on a serial manipulator without modification to the arm itself, us-
ing purely vision. This methodology allows for future adaption of this model
to alternate arms or configurations as there is no embedded information of
our specific training manipulator. This work provides motivation for further
research into computer vision based inference and control methods that can
provide accurate and robust state estimation without the use of encoders.
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Figure 2: Real-world setup with cameras marked.

Methods

To leverage a computer vision model for state inference, large amounts of
labeled data is needed for training. As such, both virtual and physical envi-
ronments were created to collect data from a physical serial manipulator. To
avoid the reliance on time-consuming real-world data collection, a physics-
based simulation was utilized to curate a large and diverse dataset of training
images. Although training with idealized data is not wholly representative
of the desired physical environment, further tuning to this desired space re-
quires much less real-world data. Specifically, we selected a transfer learning
approach using ResNet-18 pretrained on ImageNet for its feature extrac-
tion abilities, with our target task being a regression over five joint angles.
Finally, we considered various different training strategies to find an op-
timal model for this system, e.g., different loss functions, frozen ResNet
parameters, shuffled batches, and weighted loss functions.

Real-World Setup

The physical environment and experimental setup collection of real-world
data were carried out as follows. A monochrome UFACTORY X-ARM 6
serial manipulator was mounted to a table and observed with three RGB
cameras positioned in orthogonal directions. Figure 2 depicts the setup and
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three orthogonal chosen to optimize the independence of each image. Tarps
were hung in the background of the manipulator with respect to each camera
view to reduce distractions present in the physical environment. While this
strategy reduced clutter, natural imperfections such as lighting variations and
reflective surfaces remained to ensure that the physical data retained realistic
challenges. Experimental images were captured using three ZED 2i RGB
cameras with a 70° vertical field of view (FOV) and an aspect ratio of 16:9.

Simulation Setup

The simulation environment was implemented using PyBullet, which is a
Python-based interface to the Bullet Physics Engine. PyBullet provides a
lightweight simulation framework with the ability to support various robot
models and perform collision detection and camera rendering. The simulation
environment was configured to emulate the physical setup, replicating the ma-
nipulator and the three camera configuration. Figure 3 shows the manipulator
in both the simulated and physical environments, with the arm configuration
being positioned identically and captured from the same camera angle. More-
over, the simulation also incorporated a uniform black background to main-
tain further consistence with the tarp background of the physical environment
(not shown).

This ensured geometric and visual consistency between simulation and
physical environments allowing exploration of a wide range of manipulator
configurations at a low computational cost. A benefit of the simulation frame-
work is its ability to automatically flag invalid configurations, i.e., a set of
joint angles would cause the manipulator to collide with itself or with a rigid
object in its environment. Using the "getContactPoints" method, which de-
tects when collidable geometry intersect, these configurations were excluded
to better represent reality and to reduce the size of the training set. Moreover,
to ensure physical consistency of the PyBullet simualtions, several verifica-
tion and validation strategies were employed including MATLAB Simulink,
kinematic calculations, and the physical manipulator’s software package.

Simulation images were captured using the same FOV utilized by the
cameras in the physical setup. For reference, the three camera views at 40°
and 70° vertical FOV are shown in Figure 4. Using an increased FOV with
a constrained image size does decrease the angular resolution of the im-
age, seen by the stretched or otherwise distorted geometry near the edges
of the bottom row of images [14]. However, given the nature of a regression
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(a) Simulation environment (b) Real environment

Figure 3: Comparison between (a) simulated and (b) real environments with
identical manipulator states and viewpoints.

model and our method of preprocessing, we do not expect this smearing to
negatively impact performance.

Figure 4: Orthogonal camera perspectives for 40° vertical FOV (first row)
and 70° vertical FOV (second row), as seen in PyBullet.

Data Curation and Collection

Prior to data acquisition, the valid configuration were first determined. We
comment that only the first five joints of the UFACTORY X-Arm 6 were con-
sidered. In the absence of an end effector, the final wrist joint was excluded
due to the small physical size of the final link.
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Table 1: Comparison of the manufacturers joint limitations and the modified
joint limits in units of radians for the first five joints.

Joint Number
Original Modified

Lower Upper Lower Upper
1 -6.283 6.283 0.1 6.283
2 -2.059 2.094 -2.059 2.094
3 -3.927 0.192 -3.927 0.192
4 -6.283 6.283 0.1 6.283
5 -1.693 3.142 -1.693 3.142

Using the representative PyBullet model, joint angles were discretized at
15° increments, providing sufficient coverage of the configuration space for
the model to interpolate between states. Since sampling the entire range of
−2π to 2π led to duplicate configurations, the limits for these joints were
constrained. Additionally, a small offset of 0.1 radians was introduced in-
stead of a hard zero to avoid overlap with the upper bound at 2π , where the
joint yet again assumed the same physical orientation as at 0 radians. These
adjustments are highlighted in Table 1.

Data curation resulted in a total of 75,832 possible configurations. Nearly
all these images were collected from the simulation environment and later
used to train the ResNet-18 model to the simulation space. The dataset was
augmented with 500 samples from the physical environment which were later
used to tune the computer vision to real-world measurements.

Despite prior efforts to exclude invalid configurations from this set, cer-
tain configurations did not account for the path from one configuration to
the next and were thus not achievable in the real-world environment. Addi-
tionally, the self-collision detection built into the physical manipulator’s con-
troller was more sensitive than the simulation’s "getContactPoints" method,
meaning that the controller would prevent the manipulator from achieving it.
Efforts were taken to address these challenges by computing the minimum
distances to collidable geometries and imposing a threshold. However, it was
deemed most practical to manually reject colliding configurations from the
relatively small data set.

Preprocessing

Once data was collected over both environments, training and testing datasets
were preprocessed to provide standardized input to the model. Given that the
manipulator only occupies a portion of each image, each orthogonal view
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was first center-cropped to 470 × 470 pixels. This crop size was chosen
to retain regions relevant to the manipulator’s motion while discarding less
informative background areas. The cropping not only preserves important
features but reduces the computational load as well by limiting the number of
processed pixels. Following this, images were resized to 200 × 200 to match
the input dimensions required by ResNet-18 and was normalized using Ima-
geNet’s expected channel-wise mean and standard deviation: mean = [0.485,
0.456, 0.406], std = [0.229, 0.224, 0.225]. Finally, the images were concate-
nated horizontally producing a single 200 × 600 image to form a composite
representation of the manipulator from all three directions.

Alongside image preprocessing, target joint angles were encoded in sine-
cosine form as (sinθ ,cosθ) to improve learning stability. Because raw an-
gular representations can create discontinuities in the dataset, angles near 0
and 2π are visually almost identical but numerically appear far apart. These
discontinuities can confuse a regression model, leading to poor generaliza-
tion and instability in predictions. Hence, this transformation embeds angular
values on the unit circle, where equivalent orientations were mapped close
together providing an accurate representation space. Moreover, it improved
stability during training by providing smooth target space with a bounded
range [−1,1].

Model Architecture

The primary objective was to estimate the joint states of the manipulator
using multi-view RGB images. To leverage existing visual representations,
a transfer learning approach was employed by using a pretrained ResNet-
18 model as the network backbone. The ResNet-18 model employed in this
work was previously trained on ImageNet, a dataset of natural images, which
provided rich feature extraction capabilities. This reduced computational cost
and accelerated convergence, while still allowing the network to adapt to high
level visual representations of the manipulator.

To better equip the network for the regression task, modifications were to
made to the final layer of the network architecture. The single standard fully
connected layer of the pretrained ResNet-18 was replaced with a regression
head. This layer was implemented as a multi-layer perceptron (MLP) consist-
ing of five fully connected layers with ReLU activations and dropout for regu-
larization. The final layer outputs 10 values, corresponding to sine and cosine
encodings of the five target joint angles. The network input consisted of RGB
images from three orthogonal viewpoints concatenated channel-wise, form-
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ing a single composite image input. A visual representation of the proposed
model architecture can be seen in Figure 5

Figure 5: Overview of the proposed vision model architecture for joint angle
estimation.

Training Strategies
Models were trained using the Adam optimizer with a fixed learning rate
0.0005 and a batch size of 64. A weight decay of 1 × 10−5 was applied
for the simulation-only models, while a value of 1× 10−6 was used for the
hybrid-trained models to reduce overfitting. Training was performed up to
100 epochs to test convergence, with checkpoints saved at each epoch. Sev-
eral variations were applied to training to find the optimal training configura-
tion and evaluate robustness: Two loss functions were tested: mean squared
error (MSE) which penalized large deviations heavily and smooth L1 Loss
(Huber Loss) which acted like piecewise function behaving quadratically
for smaller error and linearly for larger errors, providing a balance between
characteristics of MSE and mean absolute error (MAE). Transfer learning
was applied by employing ResNet-18 parameter freezing. Two modes for the
ResNet-18 backbone were: Frozen and Unfrozen with the regression head
trainable across both. In addition, dataloader shuffling (True vs. False) was as-
sessed to see its impact. The combination of these techniques yielded eight to-
tal models, which were evaluated and compared to select the best performing
case.
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Experiment Stages
The experimental design followed a three-stage progression to address the
simulation-to-real challenge and provide subsequent results for each stage.

Stage 1, simulation-only: Models were trained, validated, and tested on
synthetic data that was generated in PyBullet. This stage was essential to
develop a baseline and enable training on large scale data to identify the best-
performing model.

Stage 2, zero-shot transfer: The trained simulation model was then only
evaluated on a set of 50 real test images. This stage measured the extent of
the domain gap and assessed both environments and how closely the model
generalized to real environmental data with no prior learning.

Stage 3, hybrid model: The third and final stage leveraged the converged
checkpoint of the simulation model as the initialization and further retrained
it on real image data. This fine-tuning was applied to leverage the knowledge
of the simulation environment while incorporating real data to adapt learned
representations and narrow domain gap. Evaluation was conducted on the
same 50 real test images to ensure consistency between Stage 2 and Stage 3.

Results

The results are organized in the following manner: simulation-only training,
zero-shot transfer to real-world data, and hybrid training with simulated and
real data. Although all models were trained for 100 epochs, convergence was
typically achieved within the first 20 epochs, which is selected as the point of
comparison for reporting results below.

Stage 1: Simulation-only

Within the simulation-only stage, several model variants configured from our
training strategies were compared to identify the best-performing model.

As seen in Figure 6, all models achieved similar performance, with mean
absolute error falling within a narrow range. Although, it was observed that
the configuration using smooth L1 loss with an unfrozen ResNet-18 using
non-shuffled training (L1_UnFrozen_SF) achieved the lowest error and was
therefore selected for further evaluations in real and hybrid settings. To better
analyze the chosen model’s performance within simulation, per-joint rela-
tive error distributions and average absolute errors are reported. Joint errors
were calculated using a wrapped difference formulation. This representation
mapped angular differences near 0 and 2π into the range [−π,π]. This wrap-
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ping was primarily beneficial for joints 1 and 4, which allow for full 2π

rotation, but was applied uniformly across all joints for consistency.

Figure 6: Comparison of mean absolute error across all eight simulation-
trained models. The y-axis is narrowed to emphasize the differences among
the best-performing variants.

From the average absolute errors shown in Figure 7 and the relative error
distributions shown in Figure 8, it it seen that joints 1-3 have more nar-
rowed distributions with errors concentrated around zero radians. In contrast,
joints 4 and 5 have more dispersed distributions indicating higher errors. A
hypothesis for this outcome is that these joints are located closed to the ma-
nipulator’s end-effector, a position that is prone to self-occlusions in certain
configurations and in certain cases, camera occlusions. Additionally, the links
between joints 4 and 5 are shorter leading to subtler changes in appearance,
which may be difficult for our network to capture consistently. Similar trends
are noticed in the following evaluations as well.

Stage 2: Zero-shot Transfer

Using the best-performing simulation model case, zero-shot transfer was per-
formed. As shown in Figure 9, error magnitudes increase broadly across
all joints as compared to the simulation results. This is expected due to the
visual domain gap: real images introduce conditions such as lighting varia-
tions and partial occlusions that are not possible to replicate in simulation
training. These differences in training and testing data make it difficult for
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Figure 7: Mean absolute error (MAE) for each of the five joints, averaged
across simulation test samples.

Figure 8: Relative error distributions for each of the five joints across simu-
lation test samples.

the model to extract stable visual features. The relative error distributions in
Figure 10 further illustrate this effect. While joint 4 and joint 5 remain the
most challenging, joints 1-3 indicate that the domain gap affects the entire
system rather than specific joints.

In addition to quantitative errors, a qualitative comparison of the predicted
against the ground truth joint values for a single configuration is shown in
Figure 11. Generalization is visible in the predicted results, where the overall
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Figure 9: Mean absolute error (MAE) per joint for the simulation-trained
model evaluated on real images.

Figure 10: Relative error distributions per joint for the simulation-trained
model evaluated on real images.

structure of the manipulator is recovered. However, noticeable discrepancies
can be supported by actual errors per joint for this case as seen in Table 2.
Joints 1-3 and 5 suffer relatively larger errors while joint 4 stays on the
lower end yet still adding to the overall error of the results. This highlights
the limitation of a zero-shot transfer method from simulation to real im-
ages: the domain gap remains persistent throughout the results preventing
any consistent alignment.

Finally, Figure 12 illustrates the displacement of the end-effector for
this configuration. Although the end-effector does not play a direct role in
state estimation, it provides a valuable validation technique. For the zero-
shot transfer case, the distance between the ground-truth and predicted end-
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(a) Predicted – View 1 (b) Predicted – View 2 (c) Predicted – View 3

(d) Ground Truth – View 1 (e) Ground Truth – View 2 (f) Ground Truth – View 3

Figure 11: Qualitative comparison of a real test configuration showing the
predicted pose using the simulation model (first row) and the ground-truth
(second row) from three views.

Table 2: Quantitative comparison on a per-joint basis of the same real test
configuration, based on the simulation model.

J1 J2 J3 J4 J5
Ground Truth (rad) 4.38 0.26 -1.75 1.22 0.45

Predicted (rad) 6.08 -0.49 -2.78 1.76 1.49
Error (rad) 1.71 -0.75 -1.03 0.54 1.05

effector is significantly large as seen by the distance line. This confirms that
state estimation suffers due to domain gap.

Stage 3: Hybrid Model

Following the same strategy, the best performing simulation model was used
for the hybrid approach.
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Figure 12: Qualitative comparison of end effector position where a red line
marks the Euclidean distance between the real test image and the estimated
configuration using the simulation model.

As shown in Figure 13, the mean absolute error per joint decreases over-
all compared to the zero-shot case. Joint 1, which exhibited the worst per-
formance in the zero-shot case, sees a substantial reduction in error and is no
longer the outlier. Joint 2 also improves considerably, maintaining its position
as one of the best-performing joints but with noticeably lower error than in the
zero-shot evaluation. Joint 3 remains less accurate than in the pure simulation
setting, yet hybrid training reduces its error relative to the zero-shot model.
Joint 4 shows little change compared to zero-shot and becomes the worst-
performing joint in the hybrid evaluation. Joint 5, which carried the highest
error in the zero-shot case, now drops below joint 4, reflecting a modest
improvement. The relative error distributions in Figure 14 further illustrate
these trends. In the zero-shot transfer case, joint 1 exhibited an extremely
dispersed distribution. Under hybrid training, its errors are now tightly cen-
tered around zero indicating a significant improvement in prediction stability.
Joint 2’s distribution, already among the narrowest, becomes even more com-
pact, confirming it benefits strongly from hybrid training. Joint 3 still trails
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Figure 13: Mean absolute error (MAE) per joint for the hybrid-trained model
on real-image test data.

Figure 14: Relative error distributions per joint for the hybrid-trained model
on real-image test data.

its performance in simulation-only testing but shows clear improvement com-
pared to zero-shot, with a more concentrated spread around zero. In contrast,
joint 4’s distribution remains largely unchanged, and joint 5 continues to be
the most error-prone, though with slightly reduced tails relative to the zero-
shot case. Overall, the hybrid model reduces the broad dispersion seen in the
zero-shot results and produces distributions that are more consistent across
joints.

To provide a direct comparison with zero-shot evaluation, Figure 15 shows
the same real test configuration rendered in PyBullet, alongside Table 3,
which summarizes the ground-truth, predicted, and error values for each joint.
Visually , the hybrid model produces a pose that is a much closer replication
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(a) Predicted – View 1 (b) Predicted – View 2 (c) Predicted – View 3

(d) Ground Truth – View 1 (e) Ground Truth – View 2 (f) Ground Truth – View 3

Figure 15: Qualitative comparison of a real test configuration showing the
predicted pose using the hybrid model (first row) and the ground-truth (sec-
ond row) from three views.

of the ground truth as seen in all orthogonal views. The per-joint errors in the
table reinforce these visual results as they show strong numerical alignment
in the manipulator joint angles. Together, the qualitative render and table
confirm that hybrid training not only narrows the numerical error but also
results in visibly improved alignment of the manipulator on real images.

Table 3: Quantitative comparison on a per-joint basis of the same real test
configuration, based on the hybrid model.

J1 J2 J3 J4 J5
Ground Truth (rad) 4.38 0.26 -1.75 1.22 0.45

Predicted (rad) 4.22 -0.03 -1.56 0.54 0.52
Error (rad) -0.16 -0.29 0.19 -0.68 0.07

The final evaluation process was to compare the distance between the pre-
dicted end effector location and the ground truth. As can be seen in Figure 16,
there is error present, noted by the red line. However, this relative distance is
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much less than when this same comparison was made using the simulation-
only model. Therefore, the performance of the model is heightened when the
variability of real-world data is introduced.

Figure 16: Qualitative comparison of end effector position where a red line
marks the Euclidean distance between the real test image and the estimated
configuration using the hybrid model.

Conclusion

We developed a vision-based deep learning approach for performing state
estimation of robotic joint angles from multi-view RGB inputs. Our approach
incorporates a neural network with a pretrained ResNet-18 backbone, which
underwent a multi-stage training process. This involved first training the net-
work on a large set of simulated data collected from a virtual 3D environment
and then fine-tuning on a smaller set of real-life camera data. The network
trained using this procedure outperformed models trained exclusively on ei-
ther simulated or real-life data and demonstrated reasonable performance on a
set of real-life test data not seen during model training. These results validate
our proposed vision-based approach for robotic state estimation and suggest
promising applications for additional configurations of serial manipulators
beyond those examined in this work.
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Future work: This methodology can be extended in numerous directions.
Inclusion of the end-effector global position as a target label for the neural
network could provide additional representation to the network to adapt and
learn from. This strategy could also mitigate the issue of gaps in learning for
shorter links across any serial manipulator that suffer subtle visual changes
across configurations. Additionally, this could help the model implicitly un-
derstand manipulator kinematics. Utilizing this vision model as an feedback
signal for a serial manipulator could be a potential direction to eliminate the
need for encoders, a key motivation to this work.

Broader impacts: An important contribution of this work is a baseline
for encoderless manipulator functionality, which has potential applications in
radiation environments, space missions, and other instances where encoder
feedback is not preferred. By reducing the reliance on joint encoders, building
on this approach could provide a cost-effective solution for many challenges
faced in the robotics space.
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